Technology and Latest Results on Fluidic Assembly of Micro-LEDs

JJ Lee, PhD President & CEO

June 27, 2019

Outline

- Fluidic assembly fundamental: self alignment, orientation control
- AOI to improve fluidic assembly yield
- Mura free micro LED display
- Advantage of fluidic assembly
- Color micro LED display demonstration
- Summary

Fluidic Assembly

								-			1000		
					Vi	deo i	n se	parate	e file	a'			
	•		0		0		ĸ						
	ė			0						0			
?													
0	0			0			00		0				
	0					· · ·		•					
					0			•		-			
h	•	•	0	0.1		0				0		. 2	

Dark circles are 50 μm diameter μLEDs Light circles are 55 μm diameter wells

Oscillating flow

- Substrate features capture µLEDs at precise positions
- Oscillating flow yields many capture attempts
- Excess µLED disks are recycled

Good oriented fill with p-GaN up

- >99.9% fill
- 100% correct alignment
- Rate > 50 million µLEDs/hr on 12" tool

µLED Disc Array Construction

High Brightness μ LED

Harvested µLED

Well on Glass

Fluidic Assembly

- Make µLEDs from commercially available LED wafers
- Harvest µLED disks into an ink for fluidic assembly
- High speed oriented fluidic assembly to position μLEDs in array
- Simple, low cost high volume manufacturing

μLED assembly is the critical processing technology

- Motion: Distribute μLED over the backplane to trapping points
- **Trapping:** Position and hold the μLED precisely to make array
- Orientation: Orient 100% of μLED diodes for forward bias

μLED Array

LTPS TFT driven μLED ~600,000 μLEDs at 167 ppi

Brief Fundamentals of Fluidic Assembly

n_v: number of vacancies n_c: number of components n_o: number of occupied sites C₁: trapping rate constant C₂: detrapping rate constant K: equilibrium rate constant C₁/C₂

- Primary goal is fill = 1
 - μ LEDs move and trap $C_1 \neq 0$
 - μLEDs do not detrap C₂ = 0
- Secondary goals
 - Speed
 - Utilization

In-situ Control of Fluidic Assembly

Automated identification

9 defects, 2 residual

First assembly yield loss %

y∖x	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
10	4.2%	0.0%	1.4%	2.8%	65.3%	8.3%	2.8%	23.6%	5.6%	2.8%	13.9%	4.2%	1.4%	0.0%	0.0%
20	1.4%	0.0%	0.0%	1.4%	4.2%	2.8%	11.1%	27.8%	9.7%	41.7%	9.7%	15.3%	20.8%	1.4%	1.4%
30	0.0%	0.0%	0.0%	1.4%	1.4%	0.0%	2.8%	1.4%	2.8%	4.2%	5.6%	5.6%	1.4%	2.8%	0.0%
40	0.0%	13.9%	19.4%	19.4%	8.3%	6.9%	8.3%	1.4%	1.4%	1.4%	1.4%	0.0%	0.0%	0.0%	5.6%
50	4.2%	12.5%	11.1%	9.7%	15.3%	5.6%	5.6%	15.3%	2.8%	9.7%	4.2%	8.3%	9.7%	16.7%	12.5%
60	62.5%	0.0%	4.2%	15.3%	16.7%	4.2%	19.4%	29.2%	2.8%	2.8%	12.5%	1.4%	1.4%	11.1%	23.6%
70	12.5%	9.7%	22.2%	30.6%	36.1%	26.4%	25.0%	44.4%	22.2%	23.6%	19.4%	2.8%	29.2%	29.2%	8.3%
80	20.8%	4.2%	0.0%	23.6%	38.9%	33.3%	51.4%	56.9%	11.1%	25.0%	70.8%	19.4%	34.7%	73.6%	62.5%
90	2.8%	12.5%	2.8%	11.1%	5.6%	6.9%	9.7%	13.9%	15.3%	11.1%	12.5%	5.6%	6.9%	45.8%	47.2%
100	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	1.4%

Assembly after parameter tuning

y∖x	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
10	0.0%	0.0%	0.0%	0.0%	11.1%	0.0%	0.0%	0.0%	1.4%	0.0%	4.2%	1.4%	1.4%	0.0%	0.0%
20	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	2.8%	1.4%	0.0%	0.0%
30	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
40	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
50	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	5.6%	0.0%	1.4%	0.0%
60	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
70	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
80	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
90	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
100	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	1.4%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%

- Full display can be monitored during processing
- In-situ tuning of assembly parameters
 - Improved fill yield and assembly speed
 - Decrease residual µLEDs on surface
- End point control for completed assembly

µLED Yield Metrology

						111	
1	::::	:::	::::	:::	::::	:::	
	:	*	***	***	***	***	••••
	***	***	:::	:::	***	:::	•••

- DSLR image of µLED emission
- FOV > 45 cm² in less than a second
- Yield feedback for fabrication
- Repair map and Mura correction (next)

Brief Process Flow for Fluidic Assembly

Micro LED Display Conference 2019

i bi bi bi bi bi bi

0 10 10 10 10

بتاليا لايتر المترالية المتراكبة 10 10 10 10 10 10

a la la la la la la la

Had a had a had

10 10 10 10

ան ան ան ան ան ան ան ան

ananananananana

100% fill

µLED Performance

- Blue LED wafers by conventional GaN MOCVD process on sapphire
- 40 μm diameter planar μLEDs
- Harvested by laser lift off
- Higher efficiency ~45% with lower droop
- Narrow range of electrical properties with Vf at 2.75 V
- Performance similar to general lighting LEDs

Rigorous MOCVD Requirements for Conventional Mass Transfer

Wavelength Variations on an Epi-wafer

- Wavelength distribution
 - Conventional MOCVD has wavelength distribution > 5 nm
 - Sorting and binning is not suitable for mass transfer technology using for µLED
 - Current method is to select stamps with proper emission wavelength and discard others
- Defect management
 - Sorting can exclude the defect dies in conventional LED industry because each die is tested
 - Defective µLED dies can be detected and excluded from transfer
 - Current strategy is to repair defects on stamp area with good yield, discarding stamps with higher defectivity
- Edge exclusion
 - For faster transfer, large stamp size is preferred, but waste area is large

Mura Free µLED Display

Wavelength & Emission Variations on an Epi-wafer

Mosaic and Non-uniform

Conventional P&P Mass Transfer

Uniform Color and Luminance

Fluidic Assembly

μLEDs in Liquid

Fluidic Assembly on TFT Glass

Proprietary Fluidic Assembly

eLux

Micro LED Display Conference 2019

Comparing to Pick-and-Place Mass Transfer (1/2)

SWOT Analysis

Strengths

- ~100% μLED utilization
- Moderate requirement for epi quality
- No mura due to randomizing
- Low fluidic assembly cost
- Active matrix ready
- IP (~40 patent families)

 eLux focus on 20 to 100 µm µLED is not suitable for small display

eLux µLED

Opportunities

- µLED can replace LED displays over 32 ppi due to better performance and lower manufacturing cost
- µLED can replace OLED in high end displays due to better performance, long lifetime, and environmental stability
- Sony / Samsung have demonstrated µLED display since CES 2012
- Samsung, LG and many others are pursuing µLED display vigorously
- Time to market

Weaknesses

Threats

Summary

- eLux technology is positioned to enable µLED display for PID
 - The best µLED entry point is at 0.6 mm pitch where standard technology fails
 - 4K and 8K displays are 110"and 220" for retail and theater applications
- µLED display fluidic assembly has advantages over technologies
 - Randomize µLED in fluidic assembly prevents mosaic and non-uniform illumination.
 - Low cost of assembly tools and fast (low cost) process
 - Able to use ~100% low cost epi wafers

Thank You!

eLu® Display